Tag Archives: IPCC

Civilization, War and Climate Change

Over the years there has been growing debate over whether civilization and the environment are integrally linked. Many scientists believe this to be the case, as it appears that several major events in the history of civilization have had an impact on the environment, while major environmental changes have also altered the course of human history. For instance, the Mongolian conquest of the 13th and 14th centuries altered carbon emissions, whereas the Roman Empire flourished during a period of rich summers, and subsequently fell apart during a period of erratic seasons.

Illustration of a Mongol WarriorRecently, scientists have uncovered evidence that suggests the Mongolian conquest of large portions of Asia, the Middle East and Europe may have had an impact on carbon dioxide emissions. When the Mongolians invaded these areas, they often destroyed entire crops, severely affecting the regions’ agriculture. As a result, many farms were abandoned, allowing the forests to take over the land. Thus, during 13th and 14th centuries, these forests were able to grow markedly and absorb huge amounts of carbon dioxide. The study claims that the total decrease in carbon dioxide during this period would be enough to cancel out one year of modern carbon emissions from gasoline. Yet it is important to remember that the Mongolian period of conquest extended across almost two centuries, which means that the actual yearly reductions were relatively insignificant in comparison with our current level of emissions. Nonetheless, the study does show that major events in human society are capable of having an impact in on the environment.

Another study, published in the Feb. 4 issue of Science magazine, also demonstrates the relationship between civilization and the climate. According to the authors of the study, the height of the Roman Empire occurred during a period when the growing season was consistently experiencing optimal conditions. Such conditions provided great economic wealth and the means to uphold the structure of the empire. Thus, the citizens of lands conquered by the empire were much less likely to show dissent.

Conversely, the collapse of the Roman Empire occurred during a period of erratic environmental conditions (perhaps partly due to agricultural overproduction within the empire) that yielded poor or mediocre crops. Without a steady food-supply, the empire faced dissent among its citizens. As the power structure was threatened within, the empire became susceptible to invasion from without and collapsed. In this way, environmental factors defined two of the largest events in Western history: the rise and fall of the Roman Empire.

Jared Diamond expounds upon this idea in his book “Guns, Germs, and Steel.”

According to Diamond, geographical determinism has defined the prosperity of American society. For instance, the vast natural resources of the country spurred our economy tremendously in the early days of the industrial revolution and our physical isolation from the rest of Western society has allowed us to remain prosperous after two world wars. Clearly, much of what makes America dominant is the physical geography that defines it as a nation.

Although the world’s booms and busts have been influenced by environmental factors, ultimately it seems that civilization has had a much larger impact on the environment. In the last 300 years, human population has increased by a factor of 10. Two worldwide wars have been fought and industrial growth has continued to increase in developed and under-developed countries at an unprecedented level. While many of these developments have been beneficial to civilization, the impact on the environment has not been so positive.

One of the negative effects brought about by civilization is the trend of global warming. Since 1750, human beings have steadily increased their production of carbon dioxide, methane, nitrous oxide and other greenhouse gases. These gases are emitted into the atmosphere as by-products of fossil fuel burning, agriculture (in fertilizers and from increased numbers of livestock) and other industrial products, such as refrigerants and aerosols. The greater concentration of these gases in the atmosphere increases the atmosphere’s ability to retain heat radiated from the sun or earth’s surface. Thus, we are experiencing global warming: an increase in the average global temperature. This increase amounts to about 0.74 degrees Celsius. While a difference of less than one degree may seem inconsequential, the average global temperature has only shown an increase of six degrees Celsius since the ice age, which means environmentalists and scientists both have every reason to be concerned about the state of our ecosystem.

By drawing from scientific studies and historical examples, we can clearly see civilization is integrally linked to the environment. Like Genghis Khan, we haven’t undertaken our endeavors with the purpose of changing the environment. Nonetheless, the implementation of large-scale activities such as automobile use, airplane travel, and even war, have significantly impacted the environment and may have very serious consequences for civilization. However, unlike Genghis Khan, we have the scientific knowledge to evaluate and limit the negative consequences of our actions. Hopefully, we will be able to learn from history in time to make a difference.

Author

Ashley Warner is a graduate student working toward her Masters in Conservation Biology. She currently resides in Washington state.


Public opinion and a geologic perspective on the effects of global warming

The topic of climate change is complex and politically charged—two characteristics that guarantee confusion in the general public. Increasingly, the subject of climate change is emerging as a partisan issue, once again dividing Republican and Democrat.

A recent Gallup poll shows that Americans are becoming increasingly less concerned about the threat. Forty eight percent of Americans believe that the seriousness of climate change is exaggerated, up from 41% in 2009 and 31% in 1997.

The doubt in public opinion is not reflected in the scientific community, however. The national science academies of all the major industrial countries have issued statements about the reality of climate change and the role of human activity in creating the change (Wikipedia).

Even if we want to assume that all public doubt over climate change is honestly acquired, a position that I do not hold, perhaps the general public can be forgiven in some measure because the issue is complex, and like every other issue in science contains degrees of uncertainty. One of my favorite quips is making predictions is tough, especially about the future. I would like to borrow that and say that making predictions is tough, especially about the past—the geologic past that is.

Huge advances have been made in recent decades in understanding past climate systems of the Earth. The picture that is emerging with increasing clarity is that the Earth and all the systems that affect climate are dynamic and complexly interrelated. A good summary of what is known about climates of the past can be found in the latest IPCC report (Jansen et al. 2007).

Of significance is the evidence that global climate trends track closely with the levels of atmospheric carbon dioxide—a pattern that is 400 million years old. The prehistoric levels of CO2 can be directly measured from ice cores for almost the last 1 million years. Before that, we obtain estimates of CO2 levels by examining proxies, things that we can measure directly within fossils or the geologic system that reflect CO2 levels indirectly.

It is like estimating a family’s income by looking at the house they live in—certainly not a perfect system, but a proxy that in general will work as we do tend to display income prosperity through home selection.

The proxy data of CO2 levels through geologic time show those periods of low concentrations correspond with periods of increased glaciation, with peaks in glacial activity around 300 million years and again in more recent times with the last Ice Age. Both those periods had lower CO2 levels. Between those periods, CO2 was high, much higher than today, and average global temperatures were much higher as well. Areas of the Earth today that are temperate were often inhabited by plant and animal species that we only find today in more tropical environments.

Carbon and temperature over 400 million years

Shaded area and the colored lines show various proxy estimates for CO2 levels over the last 400 million years. The blue bars represent periods of glacial activity. During times of low CO2 concentration temperatures were also low with ice accumulation.

Does this mean that since CO2 levels in the past were much higher than today (and higher than even predictions for the next century or more of increased carbon emission) that we can be unconcerned? The Earth has seen much higher levels of CO2 and much higher average temperatures in the past, after all.

True, but that misses the point. The point is not that we are setting up environmental conditions that are unprecedented in geologic history. The point is that the rapidity of the change we are seeing today is without precedent and is anticipated to cause natural and social changes of significant consequence.

In the past, plants and animals could respond to fluctuation in climate because the changes occurred slowly. Organisms either changed their range to stay with favorable conditions, evolved to meet the new demands of their environments, or went extinct. But they did it on geologic time scales of hundreds of thousands, or millions, of years.

The modern changes driven by human activity are causing very rapid changes, on the order of decades to centuries, and natural systems are in a crisis of adaptation. And the bigger issue is that the ecosystems of the Earth are interrelated in complex ways, such that changes will inevitability have a ripple effect. Those are the same ecosystems that we depend upon for our food, water, and other resources, and that we have built our economies on.

There are several dimensions to the crisis of global climate change. One is a crisis of nature. Charismatic species like the polar bear are threatened, but the world will not collapse when the polar bear goes the way of the dinosaur. Although I think a strong case can be made that we have some moral obligation to not stand idly by while it happens, it may be “no skin off our teeth” to have a world without polar bears.

Consider the analogy of an airplane in flight. As we fly along we could go around the structure of the airplane and pop out the rivets that hold it together. No doubt we can take out one here, another one there, and the plane will stay aloft. But if you are in the plane, how many will you be comfortable losing? At some point, you take out enough rivets and the plane will fall apart.

The loss of the polar bear is only a single rivet. But there are hundreds, even thousands more that are likely to be lost through the effects of climate change. How long before the complex systems that we rely upon come falling out of the sky is an open question—we do not know.

However, I think the real vexing issues we face are the social and political issues, which are far thornier. What actions should we take to mitigate CO2; who should pay for it; what will the effects be on developing and low-lying countries and who should take responsibility; what are our obligations to developing economies; how aggressively should we make a transition to non-carbon-based energy systems, and who will pay, and who stands to lose; how will climate changes affect agriculture, water supplies, and the general balance of political power? Questions like these are not scientifically based—they are economic, political, or moral decisions, and are the real issues of the public climate change debate.

Those who want to confound the issue for political gain often resort to throwing mud at the scientific debate, pointing to known uncertainties of the models, or dredging up scientists who are dissenters, or other similar political “gotcha” tactics. Evidence suggests that they are succeeding—the public is less certain about the reality of climate change, and the political parties are capitalizing on their confusion. This may make good political theater, but I think that this level of discourse diminishes us all.

Perhaps it is too much to hope for that we have intellectual integrity in public debate, but I keep hoping. I think Thomas Jefferson said it best, “If we are to guard against ignorance and remain free, it is the responsibility of every American to be informed.”

Gallup Poll: Americans’ Global Warming Concerns Continue to Drop

Jansen, E., J. Overpeck, K. R. Briffa, J. C. Duplessy, F. Joos, V. Masson-Delmotte, D. Olago, B. Otto-Bliesner, W. R. Peltier, S. Rahmstorf, R. Ramesh, D. Raynaud, D. Rind, O. Solomina, R. Villalba, and D. Zhang. 2007. Palaeoclimate. Pp. 433-497. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.

Wikipedia–Global warming controversy

IPCC

In 2007 the IPCC released its latest Assessment Report on the effects of global warming. This report helped make the scientific understanding of climate change more widely accessible to the public, and led to the IPCC being honored with the Nobel Peace Prize that year.

So, what is the IPCC and who makes it up?

The IPCC is the Intergovernmental Panel on Climate Change. It is a coalition of 194 countries from around the world. Membership is open to all countries of the United Nations (UN) and the World Meteorological Organization (WMO). So, the Panel comprises governmental delegations from all the member countries.

The Panel meets approximately once a year at this level. Those meetings are attended by hundreds of officials and experts from relevant ministries, agencies, and research organizations to make major decisions regarding the work of the IPCC, such as the election of officials, outlining the structure and mandate for the Working Groups and Task Forces, and other similar procedural matters.

Presently, the IPCC is organized into three Working Groups: Working Group I deals with “The Physical Science;” Working Group II with “Climate Change Impacts, Adaptation and Vulnerability;” and Working Group III with “Mitigation of Climate Change.” So, they basically examine the physical evidence, the potential and likely impacts, and ways to help reduce the impacts of climate change respectively.

The contributors to the Working Groups are thousands of volunteer scientists from all over the world who work as authors, contributors, and reviewers. None of the scientists are paid by the IPCC for their efforts. Lead author teams are created so that their composition reflects a range of views, expertise, and geographical representation. This helps to ensure that the reports from the IPCC represent a balanced, consensus view of scientists working in the field today.

Every IPCC report must be endorsed by the Panel during a Working Group or Plenary session. Full “approval” by the Panel means that the report has been subjected to line-by-line discussion and agreement, and is the procedure used for the Summary for Policymakers sections. “Adoption” of reports means that the Panel endorses the content of the report after having reviewed it section by section, and “acceptance” shows that the Panel agrees that the report demonstrates a comprehensive, objective, and balance view of the subject.

With thousands of scientists reviewing the work to this level of detail, the reports produced represent some of the most comprehensively peer-reviewed publications ever produced. That means that the conclusions of the reports should be the most conservative views to date on the subject of climate change. In future posts we will explore the evidence for, and what some of the expected effects of climate change will be.

Related Post

Public opinion and a geologic perspective on the effects of climate change